top of page
Foto del escritorAlejandro Lagos

Inteligencia Artificial: ¿Qué es y porqué importa?




La inteligencia artificial (IA) hace posible que las máquinas aprendan de la experiencia, se ajusten a nuevas aportaciones y realicen tareas como seres humanos. La mayoría de los ejemplos de inteligencia artificial sobre los que oye hablar hoy día – desde computadoras que juegan ajedrez hasta automóviles de conducción autónoma – recurren mayormente al aprendizaje profundo y al procesamiento del lenguaje natural. Empleando estas tecnologías, las computadoras pueden ser entrenadas para realizar tareas específicas procesando grandes cantidades de datos y reconociendo patrones en los datos.

El término inteligencia artificial fue adoptado en 1956, pero se ha vuelto más popular hoy día gracias al incremento en los volúmenes de datos, algoritmos avanzados, y mejoras en el poder de cómputo y el almacenaje.


La investigación inicial de la inteligencia artificial en la década de 1950 exploraba temas como la solución de problemas y métodos simbólicos. En la década de 1960, el Departamento de Defensa de los Estados Unidos mostró interés en este tipo de trabajo y comenzó a entrenar computadoras para que imitaran el razonamiento humano básico. Por ejemplo, la Defense Advanced Research Projects Agency (DARPA, Agencia de Proyectos de Investigación Avanzada de Defensa) realizó proyectos de planimetría de calles en la década de 1970. Y DARPA produjo asistentes personales inteligentes en 2003, mucho tiempo antes que Siri, Alexa o Cortana fueran nombres comunes.


Este trabajo inicial abrió el camino para la automatización y el razonamiento formal que vemos hoy en las computadoras, incluyendo sistemas de soporte a decisiones y sistemas de búsqueda inteligentes que pueden ser diseñados para complementar y aumentar las capacidades humanas. Aunque las películas de Hollywood y las novelas de ciencia ficción representan la inteligencia artificial como robots semejantes a humanos que se apoderan del mundo, la evolución actual de las tecnologías IA no es tan aterradora – o así de inteligente. En su lugar, la inteligencia artificial ha evolucionado para brindar muchos beneficios específicos a todas las industrias.


Continúe leyendo para conocer ejemplos modernos de inteligencia artificial en las áreas de atención a la salud, comercio detallista y otros sectores de relevancia.


¿Por qué es importante la inteligencia artificial?


La inteligencia artificial automatiza el aprendizaje y descubrimiento repetitivos a través de datos. La inteligencia artificial es diferente de la automatización de robots basada en hardware. En lugar de automatizar tareas manuales, la inteligencia artificial realiza tareas computarizadas frecuentes de alto volumen de manera confiable y sin fatiga. Para este tipo de automatización, la investigación humana sigue siendo fundamental para configurar el sistema y hacer las preguntas correctas.


IA agrega inteligencia a productos existentes. En la mayoría de los casos, la inteligencia artificial no se venderá como aplicación individual. En su lugar, los productos que ya utiliza serán mejorados con recursos de inteligencia artificial, de forma muy similar en que se agregó Siri como característica a una nueva generación de productos de Apple. La automatización, las plataformas conversacionales, los bots y las máquinas inteligentes se pueden combinar con grandes cantidades de datos para mejorar muchas tecnologías en el hogar y en el lugar de trabajo, desde inteligencia de seguridad hasta análisis de las inversiones.


La inteligencia artificial se adapta a través de algoritmos de aprendizaje progresivo para permitir que los datos realicen la programación. La inteligencia artificial encuentra estructura y regularidades en los datos de modo que el algoritmo adquiere una habilidad: el algoritmo se convierte en un clasificador o predictor. De este modo, así como el algoritmo puede aprender a jugar ajedrez, puede aprender también que producto recomendar a continuación en línea. Y los modelos se adaptan cuando se les proveen nuevos datos. La retropropagación es una técnica de inteligencia artificial que permite al modelo hacer ajustes, a través de capacitación y datos agregados, cuando la primera respuesta no es del todo correcta.


La inteligencia artificial analiza más datos y datos más profundos empleando redes neuronales que tienen muchas capas ocultas. Construir un sistema de detección de fraude con cinco capas ocultas era casi imposible hace unos años. Todo eso ha cambiado con increíble poder de cómputo y el Big Data. Se necesitan muchos datos para entrenar modelos de aprendizaje profundo porque aprenden directamente de los datos. Cuantos más datos les pueda proporcionar, más precisos se vuelven.


La inteligencia artificial logra una increíble precisión a través de redes neuronales profundas – lo cual antes era imposible. Por ejemplo, sus interacciones con Alexa, Google Search y Google Photos están todas basadas en el aprendizaje profundo – y se siguen volviendo más precisas cuanto más las usamos. En el campo de la medicina, las técnicas de inteligencia artificial del aprendizaje profundo, clasificación de imágenes y reconocimiento de objetos se pueden emplear ahora para detectar cáncer en MRIs (imágenes de resonancia magnética) con la misma precisión que radiólogos altamente capacitados.


La inteligencia artificial saca el mayor provecho de los datos. Cuando los algoritmos son de autoaprendizaje, los datos mismos pueden volverse de propiedad intelectual. Las respuestas están en los datos; usted sólo tiene que aplicar inteligencia artificial para sacarlas a la luz. Como el rol de los datos es ahora más importante que nunca antes, pueden crear una ventaja competitiva. Si tiene los mejores datos en una industria competitiva, incluso si todos aplican técnicas similares, los mejores datos triunfarán.

73 visualizaciones0 comentarios

Entradas recientes

Ver todo

El caso Nokia.

댓글


bottom of page